Maximum Sum Circular Subarray

Similar Problems:

Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.

Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)

Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], …, C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)

Example 1:

Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3

Example 2:

Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10

Example 3:

Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4

Example 4:

Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3

Example 5:

Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1

Note:

- -30000 <= A[i] <= 30000
- 1 <= A.length <= 30000

Github: code.dennyzhang.com

Credits To: leetcode.com

Leave me comments, if you have better ways to solve.

- Solution:

// Blog link: https://code.dennyzhang.com/maximum-sum-circular-subarray // Basic Ideas: dynamic programming + leftrightpass // // f(i): From A[0] to A[i], find the sum of max subarray which ends with A[i] // l(i): sum(A[0]+...A[i-1]) // g(i): From A[len(A)-1] to A[i], find the sum of max subarray which starts with A[len(A)-1] // // dp(i) = max(f(i), l(i)+g(i)) // res = max(dp[]) // Complexity: Time O(n), Space O(n) func maxSubarraySumCircular(A []int) int { f, l := make([]int, len(A)), make([]int, len(A)) sum := 0 res := A[0] for i, num := range A { l[i] = sum if i == 0 || f[i-1] < 0 { f[i] = num } else { f[i] = f[i-1] + num } if f[i] > res { res = f[i] } sum += num } max, sum := A[len(A)-1], 0 for i:=len(A)-1; i>=0; i-- { if A[i] + sum > max { max = A[i] + sum } if l[i]+max > res { res = l[i]+max } sum += A[i] } return res }