Rectangle Area II

Similar Problems:

We are given a list of (axis-aligned) rectangles. Each rectangle[i] = [x1, y1, x2, y2] , where (x1, y1) are the coordinates of the bottom-left corner, and (x2, y2) are the coordinates of the top-right corner of the ith rectangle.

Find the total area covered by all rectangles in the plane. Since the answer may be too large, return it modulo 10^9 + 7.

Example 1:

Input: [[0,0,2,2],[1,0,2,3],[1,0,3,1]] Output: 6 Explanation: As illustrated in the picture.

Example 2:

Input: [[0,0,1000000000,1000000000]] Output: 49 Explanation: The answer is 10^18 modulo (10^9 + 7), which is (10^9)^2 = (-7)^2 = 49.

Note:

- 1 <= rectangles.length <= 200
- rectanges[i].length = 4
- 0 <= rectangles[i][j] <= 10^9
- The total area covered by all rectangles will never exceed 2^63 – 1 and thus will fit in a 64-bit signed integer.

Github: code.dennyzhang.com

Credits To: leetcode.com

Leave me comments, if you have better ways to solve.

- Solution:

**General Thinkings:**

**Key Observations:**

**Walk Through Testdata**

// https://code.dennyzhang.com/rectangle-area-ii