Transform to Chessboard

Similar Problems:

An N x N board contains only 0s and 1s. In each move, you can swap any 2 rows with each other, or any 2 columns with each other.

What is the minimum number of moves to transform the board into a “chessboard” – a board where no 0s and no 1s are 4-directionally adjacent? If the task is impossible, return -1.

Examples:

Input: board = [[0,1,1,0],[0,1,1,0],[1,0,0,1],[1,0,0,1]] Output: 2 Explanation: One potential sequence of moves is shown below, from left to right: 0110 1010 1010 0110 --> 1010 --> 0101 1001 0101 1010 1001 0101 0101 The first move swaps the first and second column. The second move swaps the second and third row.

Input: board = [[0, 1], [1, 0]] Output: 0 Explanation: Also note that the board with 0 in the top left corner, 01 10 is also a valid chessboard.

Input: board = [[1, 0], [1, 0]] Output: -1 Explanation: No matter what sequence of moves you make, you cannot end with a valid chessboard.

Note:

- board will have the same number of rows and columns, a number in the range [2, 30].
- board[i][j] will be only 0s or 1s.

Github: code.dennyzhang.com

Credits To: leetcode.com

Leave me comments, if you have better ways to solve.

- Solution:

General Thinking:

// https://code.dennyzhang.com/transform-to-chessboard