Wiggle Subsequence

Similar Problems:

A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.

For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.

Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.

Example 1:

Input: [1,7,4,9,2,5] Output: 6 Explanation: The entire sequence is a wiggle sequence.

Example 2:

Input: [1,17,5,10,13,15,10,5,16,8] Output: 7 Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].

Example 3:

Input: [1,2,3,4,5,6,7,8,9] Output: 2

Follow up:

Can you do it in O(n) time?

Github: code.dennyzhang.com

Credits To: leetcode.com

Leave me comments, if you have better ways to solve.

- Solution: XXX

**General Thinkings:**

**Key Observations:**

**Walk Through Testdata**

// Blog link: https://code.dennyzhang.com/wiggle-subsequence